The height of scaled attachment random recursive trees
نویسندگان
چکیده
We study depth properties of a general class of random recursive trees where each node n attaches to the random node !nXn" and X0, . . . , Xn is a sequence of i.i.d. random variables taking values in [0, 1). We call such trees scaled attachment random recursive trees (SARRT). We prove that the height Hn of a SARRT is asymptotically given by Hn ∼ αmax log n where αmax is a constant depending only on the distribution of X0 whenever X0 has a bounded density. This gives a new elementary proof for the height of uniform random recursive trees Hn ∼ e log n that does not use branching random walks.
منابع مشابه
Limit distribution of the degrees in scaled attachment random recursive trees
We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...
متن کاملDepth Properties of scaled attachment random recursive trees
We study depth properties of a general class of random recursive trees where each node i attaches to the random node biXic and X0, . . . , Xn is a sequence of i.i.d. random variables taking values in [0, 1). We call such trees scaled attachment random recursive trees (sarrt). We prove that the height Hn of a sarrt is asymptotically given by Hn ∼ αmax logn where αmax is a constant depending only...
متن کاملLimit Distribution of Degrees in Scaled Attachment Random Recursive Trees
We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node i is attached to the node labeled biXic where X0, . . . , Xn is a sequence of i.i.d. random variables, with support in [0, 1) and distribution fun...
متن کاملBranches in random recursive k-ary trees
In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.
متن کاملP´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کامل